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Outline

Introduction :

I Quantum computing, quantum circuits,

I Quantum circuit synthesis.

Main question : minimal number of gates required to
implement any quantum operator ?

Our contribution :

I Lower bounds in the size of trapped-ions circuits,

I Synthesis framework using numerical optimization,

I Experimental results to confirm/infirm these lower bounds.
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Quantum vs Classical computation

I Bit = {0, 1} → Qubit ∈ C2

|ψ〉 = α

(
1
0

)
︸︷︷︸
False

+β

(
0
1

)
︸︷︷︸
True

, |α|2 + |β|2 = 1

I All computations require linear algebra

Tensor product : |ψ3〉︸︷︷︸
C2n+m

= |ψ1〉︸︷︷︸
C2n

⊗ |ψ2〉︸︷︷︸
C2m

Matrix-vector multiplication :

|ψt2〉 = U |ψt1〉 ⇐⇒ |ψt1〉 = UH |ψt2〉

U ∈ U(2n) = {A ∈M2n(C)|AHA = I}
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Common quantum operators

I Examples of quantum operators on 1 qubit :

• X =

(
0 1
1 0

)
= ”NOT”

• H = 1√
2

(
1 1
1 −1

)
• T =

(
1 0
0 e iπ/4

)
• Rz(θ) =

(
e−iθ/2 0

0 e iθ/2

)
• Rx(θ) =

(
cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

)

I Entangling operator CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


|ψ〉 =

1√
2

(|0〉+|1〉)⊗|0〉 CNOT−−−−→ 1√
2

(|00〉+|11〉) 6= |ψ1〉⊗|ψ2〉
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Quantum circuit

Quantum algorithm = quantum circuit = series of quantum gates

Space composition → tensor product
Time composition → matrix multiplication from the left

Compilation
step

U
Rz

Rx

H

T

U = Λ3(Rx)× (I2 ⊗H ⊗ I2)× (CNOT ⊗ I2)× (T ⊗ I2 ⊗Rz)

time

space ∑1
i0,i1,i2=0 αi0i1i2 |i0i1i2〉

|0〉
|0〉
|0〉

U is unknown to the hardware
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Universality

Hardware constraint : small subset of gates natively available

Universality : a set of gates is universal if any operator can be
synthesized using only these gates

Example : NAND (Toffoli) is universal in (reversible) classical
computing

Famous universal sets for superconducting qubit processors
(IBM, Google, Rigetti) :

Basic set : { CNOT, U(2) }
Elementary set : { CNOT, H, T }
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Circuit synthesis

Problem : Given an n-qubits unitary operator U ∈ U(2n),
find (using classical computer) a circuit that implements it
with some given criteria:

I lowest number of gates,

I specific set of gates (hardware constraints),

I allowed/forbidden extra memory (auxiliary qubits),

I maximum approximation error (‖U − Usynth‖F ≤ ε),
I minimal computation time.

Special case : when U is a normalized column of a matrix, we talk
about state preparation.
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Lowest number of gates : Hard problem
[ Shende, Bullock, Markov, IEEE, 2006 ]

U ∈ U(2n) : the complexity (in gate count) is exponential in n.
We assume here that U is generic.

Many algebraic methods with an exponential number of gates
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Hardware constraints : Trapped-ions circuits

Competing technology for the quantum supremacy :

I Circuits have high fidelity ( = less sensitive to noise),
I qubits have a long decoherence time ( = the processor can

perform longer computations )

Different set of universal gates :
I local Rz gates
I global Rx gates (local Rx are applied to every qubit with the

same angle θ)
I the entangling gate is the MS gate defined by

MS(θ) = e−iθ(
∑n

i=1 σ
i
x )2/4 = H⊗nD(θ)H⊗n

with
D(θ) = diag([e(n−Hamm(i))2×θ]i=0..2n−1)

MS gate is a global operation, acting on all qubits
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Existing numerical methods

I BFGS algorithm for trapped-ions circuits

I machine learning techniques for photonic circuits

I genetic algorithms for IBM architecture

Yet no control on the optimality of the solution / Efficiency

=⇒ can we use numerical methods to produce short circuits
AND to provide some theoretical insights on the overall
complexity ?

I deriving lower bounds on the number of gates to synthesize
any trapped-ions quantum circuits

I use numerical optimization to investigate the tightness of
these bounds
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Circuit topology

Circuit topology = abstraction of a circuit with unspecified
parameterized gates : the degrees of freedom

A topology is summarized by a smooth function f : Rk → U(2n)

Rz

Rx Ry Rz

Example : for the circuit above, f : R4 → U(8)

Essential property : a topology is said to be universal if
=(f ) = U(2n)

=⇒ how many gates a topology should at least contain to
be universal ?
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Lower bounds for trapped-ions circuits (1/3)

The question was answered for {SU(2),CNOT} circuits
We do a similar reasoning for trapped-ions circuits, let

f : Rk → SU(2n),

I if k < dim(SU(2n)) = 4n then =(f ) is of measure 0, thus

k ≥ 4n

I we derive a canonical form for trapped-ions circuits to get the
maximum possible number of degrees of freedom in a topology
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Lower bounds for trapped-ions circuits (2/3)

1) A circuit for trapped-ions has the layer decomposition

local gates | MS gate | ... | MS gate | local gates

2) Any local gate can be decomposed

U = Rz(α)× Rx(−π/2)× Rz(β)× Rx(π/2)× Rz(γ)

3)

Rz MS U Rz U U ′MS MS

Final canonical form :

Rz Rx(
π
2 ) Rx(−π

2 )

Rz

Rz

Rx(
π
2 )

Rx(
π
2 )

Rz

Rz

Rz

Rx(−π
2 )

Rx(−π
2 )

MS

Rz

Rz

Rz

MS

Rz Rx(
π
2 ) Rx(−π

2 )

Rz

Rz

Rx(
π
2 )

Rx(
π
2 )

Rz

Rz

Rz

Rx(−π
2 )

Rx(−π
2 )

Rz

Rz

Rz

Rx(
π
2 ) Rx(−π

2 )

Rx(
π
2 )

Rx(
π
2 )

Rz

Rz

Rz

Rx(−π
2 )

Rx(−π
2 )
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Lower bounds for trapped-ions circuits (3/3)

I ”At the left” of each MS gate we can have at most 2n DOF,

I we assume the MS are parameterized,

I the last layer of local gates can have at most 3n DOF,

I a global phase counts for one DOF.

Circuits on n qubits with k MS gates : (2n + 1)k + 3n + 1 DOF

#MS ≥
⌈

4n − 3n − 1

2n + 1

⌉
.

For state preparation :

#MS ≥
⌈

2n+1 − 2n − 2

2n + 1

⌉
.

Can we synthesize numerically any quantum operator with
circuits of this size ?
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Numerical optimization framework

We simplify the problem by focusing on one state only (= state
preparation)
Given a state |ψ〉 and a topology f , the best circuit to implement
|ψ〉 in f in the solution of

arg min
x
‖ f (x) |0〉 − |ψ〉 ‖ = arg min

x
g(x)

where we choose ‖ · ‖ to be the euclidean norm, we have :

g(x) = 2×
(

1−<
(
〈0| f (x)† |ψ〉

))
.

The gradient also has a useful analytical expression such that :
computing g(x) and ∂

∂x g can be performed in 3 numerical
simulations of the circuit
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Experimental setup

50 random unitaries on 4 qubits / 50 random states on 7 qubits.
Optimizations run for circuits with various number of MS gates.

We store for each circuit size :

I the maximum error encountered among the sample,

I the average number of iterations needed.

Core of the calculation in C with OpenMP, interface with Python
and Scipy for the optimization.
Experiments achieved using a 24-core Intel Xeon(R) E7-8890 v4
processor at 2.4 GHz 24-cores.
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Experimental results
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Experimental results
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Conclusion and future work

During this talk :

I we introduced the main issues of quantum circuit synthesis,

I we derived lower bounds on the minimum size of a universal
trapped-ions quantum circuit,

I we used a simple optimization framework such that we can:

? compute optimal circuits up to 4/7 qubits for unitaries/states,
? compute close to optimal circuits up to 6/12 qubits,
? confirm the tightness of the bounds.

Future work :

I using GPU and distributed computing to address larger
problems,

I Hessian calculation for more complex optimizers,

I extension to {SU(2),CNOT} circuits.
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