Numerical verification of lower bounds in trapped-ions quantum circuits synthesis

Timothée Goubault de Brugière^{1,2}, Marc Baboulin¹, Benoît Valiron¹, Cyril Allouche²

¹ LRI and Université Paris-Sud, Orsay, France ² Atos Quantum Lab, Les Clayes-sous-Bois, France

June 21, 2019

Outline

Introduction :

- Quantum computing, quantum circuits,
- Quantum circuit synthesis.

Main question : minimal number of gates required to implement any quantum operator ?

Our contribution :

- Lower bounds in the size of trapped-ions circuits,
- Synthesis framework using numerical optimization,
- Experimental results to confirm/infirm these lower bounds.

Fields of research

Quantum vs Classical computation

► Bit = {0,1} → Qubit ∈
$$\mathbb{C}^2$$

 $|\psi\rangle = \alpha \underbrace{\begin{pmatrix}1\\0\\False\end{pmatrix}}_{False} + \beta \underbrace{\begin{pmatrix}0\\1\\True\end{pmatrix}}_{True} |\alpha|^2 + |\beta|^2 = 1$

Quantum vs Classical computation

► Bit = {0,1} → Qubit ∈
$$\mathbb{C}^2$$

 $|\psi\rangle = \alpha \underbrace{\begin{pmatrix}1\\0\\False\end{pmatrix}}_{False} + \beta \underbrace{\begin{pmatrix}0\\1\\True\end{pmatrix}}_{True}, |\alpha|^2 + |\beta|^2 = 1$

All computations require linear algebra

Matrix-vector multiplication :

$$\begin{split} |\psi_{t_2}\rangle &= U \, |\psi_{t_1}\rangle \iff |\psi_{t_1}\rangle = U^H \, |\psi_{t_2}\rangle \\ U &\in \mathcal{U}(2^n) = \{A \in \mathcal{M}_{2^n}(\mathbb{C}) | A^H A = I\} \end{split}$$

Common quantum operators

Examples of quantum operators on 1 qubit :

•
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} =$$
 "NOT"
• $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
• $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$
• $R_z(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix}$
• $R_x(\theta) = \begin{pmatrix} \cos(\theta) & -i\sin(\theta) \\ -i\sin(\theta) & \cos(\theta) \end{pmatrix}$

• Entangling operator
$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$|\psi
angle = rac{1}{\sqrt{2}} (|0
angle + |1
angle) \otimes |0
angle \xrightarrow{CNOT} rac{1}{\sqrt{2}} (|00
angle + |11
angle)
eq |\psi_1
angle \otimes |\psi_2
angle$$

Quantum circuit

 $\label{eq:Quantum algorithm} Quantum \ algorithm = quantum \ circuit = series \ of \ quantum \ gates$

Quantum algorithm = quantum circuit = series of quantum gates

 $U = \Lambda_3(R_x) \times (I_2 \otimes H \otimes I_2) \times (CNOT \otimes I_2) \times (T \otimes I_2 \otimes R_z)$

U is unknown to the hardware

Hardware constraint : small subset of gates natively available

Universality : a set of gates is universal if any operator can be synthesized using only these gates

Example : NAND (Toffoli) is universal in (reversible) classical computing

Famous universal sets for superconducting qubit processors (IBM, Google, Rigetti) :

Basic set : { CNOT, U(2) } Elementary set : { CNOT, H, T } **Problem** : Given an n-qubits unitary operator $U \in U(2^n)$, find (using classical computer) a circuit that implements it with some given criteria:

lowest number of gates,

- specific set of gates (hardware constraints),
- allowed/forbidden extra memory (auxiliary qubits),
- maximum approximation error $(\|U U_{synth}\|_F \le \epsilon)$,
- minimal computation time.

Special case : when U is a normalized column of a matrix, we talk about *state preparation*.

Lowest number of gates : Hard problem [Shende, Bullock, Markov, IEEE, 2006]

 $U \in \mathcal{U}(2^n)$: the complexity (in gate count) is exponential in *n*. We assume here that *U* is generic.

	Number of qubits and gate counts							
Synthesis Algorithm	1	2	3	4	5	6	7	n
Original QR decomp. [3, 10]								$O(n^3 4^n)$
Improved QR decomp. [21]								$O(n4^n)$
Palindrome transform [2]								$O(n4^n)$
QR [33, Table 1]	0	4	64	536	4156	22618	108760	$O(4^n)$
CSD [22, p. 4]	0	8	48	224	960	3968	16128	$4^n - 2 \times 2^n$
QSD $(l = 1)$	0	6	36	168	720	2976	12096	$(3/4) \times 4^n - (3/2) \times 2^n$
QSD $(l=2)$	0	3	24	120	528	2208	9024	$(9/16) \times 4^n - (3/2) \times 2^n$
QSD ($l = 2$, optimized)	0	3	20	100	444	1868	7660	$(23/48) \times 4^n - (3/2) \times 2^n + 4/3$
Lower bounds [28, 29]	0	3	14	61	252	1020	4091	$\lceil \frac{1}{4}(4^n-3n-1) \rceil$

Many algebraic methods with an exponential number of gates

Hardware constraints : Trapped-ions circuits

Competing technology for the quantum supremacy :

- Circuits have high fidelity (= less sensitive to noise),
- qubits have a long decoherence time (= the processor can perform longer computations)

Different set of universal gates :

- ▶ local *R_z* gates
- global R_x gates (local R_x are applied to every qubit with the same angle θ)
- the entangling gate is the MS gate defined by

$$MS(\theta) = e^{-i\theta(\sum_{i=1}^n \sigma_x^i)^2/4} = H^{\otimes n}D(\theta)H^{\otimes n}$$

with

$$D(\theta) = \mathsf{diag}([e^{(n-\mathsf{Hamm}(i))^2 \times \theta}]_{i=0..2^n-1})$$

MS gate is a global operation, acting on all qubits

Existing numerical methods

- BFGS algorithm for trapped-ions circuits
- machine learning techniques for photonic circuits
- genetic algorithms for IBM architecture

Yet no control on the optimality of the solution / Efficiency

 \implies can we use numerical methods to produce short circuits AND to provide some theoretical insights on the overall complexity ?

- deriving lower bounds on the number of gates to synthesize any trapped-ions quantum circuits
- use numerical optimization to investigate the tightness of these bounds

Circuit topology

 $\label{eq:circuit topology} \mbox{ = abstraction of a circuit with unspecified } parameterized gates : the degrees of freedom$

A topology is summarized by a smooth function $f : \mathbb{R}^k \to \mathcal{U}(2^n)$

Example : for the circuit above, $f : \mathbb{R}^4 \to \mathcal{U}(8)$

Essential property : a topology is said to be <u>universal</u> if $\Im(f) = \mathcal{U}(2^n)$

 \implies how many gates a topology should at least contain to be universal ?

The question was answered for $\{SU(2), CNOT\}$ circuits We do a similar reasoning for trapped-ions circuits, let

$$f: \mathbb{R}^k \to \mathcal{SU}(2^n),$$

• if $k < \dim(\mathcal{SU}(2^n)) = 4^n$ then $\Im(f)$ is of measure 0, thus

$$k \ge 4^n$$

we derive a canonical form for trapped-ions circuits to get the maximum possible number of degrees of freedom in a topology

Lower bounds for trapped-ions circuits (2/3)

1) A circuit for trapped-ions has the layer decomposition

local gates | MS gate | ... | MS gate | local gates

2) Any local gate can be decomposed

$$U = R_z(\alpha) \times R_x(-\pi/2) \times R_z(\beta) \times R_x(\pi/2) \times R_z(\gamma)$$

Final canonical form :

Lower bounds for trapped-ions circuits (3/3)

- ▶ "At the left" of each MS gate we can have at most 2n DOF,
- we assume the MS are parameterized,
- ▶ the last layer of local gates can have at most 3*n* DOF,
- ► a global phase counts for one DOF.

Circuits on *n* qubits with *k* MS gates : (2n + 1)k + 3n + 1 DOF

$$\#MS \geq \left\lceil \frac{4^n - 3n - 1}{2n + 1} \right\rceil.$$

For state preparation :

$$\#MS \ge \left\lceil \frac{2^{n+1}-2n-2}{2n+1} \right\rceil.$$

Can we synthesize numerically any quantum operator with circuits of this size ?

Numerical optimization framework

We simplify the problem by focusing on one state only (= state preparation) Given a state $|\psi\rangle$ and a topology f, the best circuit to implement $|\psi\rangle$ in f in the solution of

$$rg \min_{x} \parallel f(x) \ket{0} - \ket{\psi} \parallel = rg \min_{x} g(x)$$

where we choose $\|\cdot\|$ to be the euclidean norm, we have :

$$g(x) = 2 \times \left(1 - \Re \left(\langle 0 | f(x)^{\dagger} | \psi \rangle \right) \right).$$

The gradient also has a useful analytical expression such that : computing g(x) and $\frac{\partial}{\partial x}g$ can be performed in 3 numerical simulations of the circuit 50 random unitaries on 4 qubits / 50 random states on 7 qubits. Optimizations run for circuits with various number of MS gates.

We store for each circuit size :

- the maximum error encountered among the sample,
- the average number of iterations needed.

Core of the calculation in C with OpenMP, interface with Python and Scipy for the optimization.

Experiments achieved using a 24-core Intel Xeon(R) E7-8890 v4 processor at 2.4 GHz 24-cores.

Experimental results

Experimental results

Conclusion and future work

During this talk :

- we introduced the main issues of quantum circuit synthesis,
- we derived lower bounds on the minimum size of a universal trapped-ions quantum circuit,
- we used a simple optimization framework such that we can:
 - \star compute optimal circuits up to 4/7 qubits for unitaries/states,
 - \star compute close to optimal circuits up to 6/12 qubits,
 - \star confirm the tightness of the bounds.

Future work :

- using GPU and distributed computing to address larger problems,
- Hessian calculation for more complex optimizers,
- extension to $\{\mathcal{SU}(2), CNOT\}$ circuits.