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Outline

Introduction :

» Quantum computing, quantum circuits,

» Quantum circuit synthesis.

Main question : minimal number of gates required to
implement any quantum operator ?

Our contribution :

» Lower bounds in the size of trapped-ions circuits,

» Synthesis framework using numerical optimization,

» Experimental results to confirm/infirm these lower bounds.
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Quantum vs Classical computation

» Bit = {0,1} — Qubit € C?
o) =a(p)+(3) lak + 1P =1

=
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Quantum vs Classical computation

» Bit = {0,1} — Qubit € C?
o) =a(p)+(3) lak + 1P =1

=

False True

» All computations require linear algebra

Tensor product : [3) = [11) @ |¢n)
— —~ =~
Q2ntm c2n c2m

Matrix-vector multiplication :

|¢t2> = U|'¢t1> — |¢t1> = UH ’¢t2>
Ucl(2") = {Aec Mxn(C)|APA =1}
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Common quantum operators

» Examples of quantum operators on 1 qubit :
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Quantum circuit

Quantum algorithm = quantum circuit = series of quantum gates
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Quantum circuit

Quantum algorithm = quantum circuit = series of quantum gates

Space composition — tensor product
Time composition — matrix multiplication from the left
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Universality

Hardware constraint : small subset of gates natively available

Universality : a set of gates is universal if any operator can be
synthesized using only these gates

Example : NAND (Toffoli) is universal in (reversible) classical
computing

Famous universal sets for superconducting qubit processors
(IBM, Google, Rigetti) :

Basic set : { CNOT, U(2) }
Elementary set : { CNOT, H, T }
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Circuit synthesis

Problem : Given an n-qubits unitary operator U € U(2"),
find (using classical computer) a circuit that implements it
with some given criteria:

» lowest number of gates,

» specific set of gates (hardware constraints),

» allowed/forbidden extra memory (auxiliary qubits),
» maximum approximation error (||U — Usynen||F < €),

» minimal computation time.

Special case : when U is a normalized column of a matrix, we talk
about state preparation.
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Lowest number of gates : Hard problem
[ Shende, Bullock, Markov, IEEE, 2006 |

U e U(2") : the complexity (in gate count) is exponential in n.
We assume here that U is generic.

Number of qubits and gate counts
Synthesis Algorithm 1[2]3] 4] 5 6 7 n
Original QR decomp. [3, 10] E— O(n’a™)
Improved QR decomp. [21] — O(nd4")
Palindrome transform [2] E— O(n4")
QR [33, Table 1] 04|64 53 | 4156 | 22618 | 108760 || O(4")
CSD [22, p. 4] 0|8 [48 224 [ 960 | 3968 [ 16128 || 4" —2x2"
QSD(=1) 0636|168 | 720 | 2976 | 1209 || (3/4) x4"—(3/2) x 2"
QSD (/ =2) 03|24 (120 528 | 2208 | 9024 | (9/16) x 4" — (3/2) x 2"
QSD (/ = 2, optimized) 0[3[20]100| 444 | 1868 | 7660 || (23/48)x 4" —(3/2) % 2" +4/3
Lower bounds [28, 29] 0[3[14] 61 | 252 | 1020 | 4091 || [1(4"—3n—1)]

Many algebraic methods with an exponential number of gates
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Hardware constraints : Trapped-ions circuits

Competing technology for the quantum supremacy :
» Circuits have high fidelity ( = less sensitive to noise),
» qubits have a long decoherence time ( = the processor can
perform longer computations )

Different set of universal gates :

> local R, gates
» global Ry gates (local Ry are applied to every qubit with the

same angle 0)
> the entangling gate is the MS gate defined by

MS(0) = e V(i1 0)*/4 = HED(9) HE"

with .
D(Q) _ diag([e(n—Hamm(l)) XG]i:O.Q"fl)

MS gate is a global operation, acting on all qubits
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Existing numerical methods

» BFGS algorithm for trapped-ions circuits
» machine learning techniques for photonic circuits

» genetic algorithms for IBM architecture

Yet no control on the optimality of the solution / Efficiency

— can we use numerical methods to produce short circuits
AND to provide some theoretical insights on the overall
complexity ?

» deriving lower bounds on the number of gates to synthesize
any trapped-ions quantum circuits

» use numerical optimization to investigate the tightness of
these bounds
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Circuit topology

Circuit topology = abstraction of a circuit with unspecified
parameterized gates : the degrees of freedom

A topology is summarized by a smooth function f : RX — 7/(2")

7]

—RHRfHR——
Example : for the circuit above, f : R* — 1/(8)

Essential property : a topology is said to be universal if
S(F) =u(2")

—> how many gates a topology should at least contain to
be universal ?
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Lower bounds for trapped-ions circuits (1/3)

The question was answered for {SU(2), CNOT } circuits
We do a similar reasoning for trapped-ions circuits, let

f R = SuU@2m,

> if k < dim(SU(2")) = 4" then 3(f) is of measure 0, thus
k>4

» we derive a canonical form for trapped-ions circuits to get the
maximum possible number of degrees of freedom in a topology
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Lower bounds for trapped-ions circuits (2/3)

1) A circuit for trapped-ions has the layer decomposition
local gates | MS gate | ... | MS gate | local gates
2) Any local gate can be decomposed
U= R;(a) x R(—7/2) x Rz(8) x R(7/2) x Rz(7)

3)

e ms v = JusHrul— = —wus

Final canonical form :
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Lower bounds for trapped-ions circuits (3/3)

v

" At the left” of each MS gate we can have at most 2n DOF,

> we assume the MS are parameterized,

v

the last layer of local gates can have at most 3n DOF,

v

a global phase counts for one DOF.

Circuits on n qubits with k MS gates : (2n+ 1)k +3n+ 1 DOF

4" _3p—1
MS> | — 27 7.
# - [ 2n+1 -‘
For state preparation :
2+l _op_ 2
MS> |2 = <
# - [ 2n+1 —‘

Can we synthesize numerically any quantum operator with
circuits of this size ?
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Numerical optimization framework

We simplify the problem by focusing on one state only (= state
preparation)

Given a state |¢) and a topology f, the best circuit to implement
[¢)) in f in the solution of

arg min || £(x)[0) — [} | = arg min g(x)
where we choose || - || to be the euclidean norm, we have :

g() =2x (1= (0 () ))).

The gradient also has a useful analytical expression such that :
computing g(x) and a%g can be performed in 3 numerical
simulations of the circuit
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Experimental setup

50 random unitaries on 4 qubits / 50 random states on 7 qubits.
Optimizations run for circuits with various number of MS gates.

We store for each circuit size :
> the maximum error encountered among the sample,

> the average number of iterations needed.

Core of the calculation in C with OpenMP, interface with Python
and Scipy for the optimization.

Experiments achieved using a 24-core Intel Xeon(R) E7-8890 v4
processor at 2.4 GHz 24-cores.
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Experimental results
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Experimental results

Number of iterations
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Conclusion and future work

During this talk :

» we introduced the main issues of quantum circuit synthesis,

» we derived lower bounds on the minimum size of a universal
trapped-ions quantum circuit,

» we used a simple optimization framework such that we can:

* compute optimal circuits up to 4/7 qubits for unitaries/states,
* compute close to optimal circuits up to 6/12 qubits,
* confirm the tightness of the bounds.

Future work :

» using GPU and distributed computing to address larger
problems,

> Hessian calculation for more complex optimizers,

» extension to {SU(2), CNOT} circuits.
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