

VERT Daniel LOUISE Stephane SIRDEY Renaud

Scott Adams/Dilbert

ON THE LIMITATIONS OF THE CHIMERA GRAPH TOPOLOGY IN USING ANALOG QUANTUM COMPUTERS

BACKGROUND AND MOTIVATIONS

« I think I can safely say that nobody understands quantum mechanics » Richard Feynman

LIMITATION: Remain very modest in terms of informatics*.

No clear technological path for scaling up, maybe in very long term.

* "49" qbits at IBM

list

Ceatech

D-Wave is now shipping its new \$15 million, 10-foot tall quantum computer

But can it run Crysis? By Chaim Garlenberg | Jan 25, 2017, 4:53pm ES1

Quantum computing is a very complicated subject hmnch of computer sciences that could one day mid-adity charge the very our convolves function. At the forehead of that lefs is a Canadam company called D-News, which created the word's biggest quantum computing chail barly way, with our <u>2000 quality</u> (quantum bits) to perform calculations. Now, that char Mingh shipping in a To-To-to-tal, 515 million doing quantum computer calculations 2000Q, which is a successor to the company's earlier 1000CL, which only had half the number of quality.

APPLICATIONS: Naturally applies to the optimization / operational research problems
LIMITATION: Minimize an Hamiltonian (spin glasses)* using a quantum phenomenon, functionally similar to
simulated annealing

		→		
D-Wave Two	D-Wave 2X	D-Wave 2000C		
12 (8x8x8) qubit "Vesuvius" rocessor	1152 (8x12x12) qubit "Washington" processor	2048 (8x16x16) qubit "Whist processor		
09 qubits working – 95% yield	1097 qubits working - 95% yield	2038 qubits working - 97%		
472 ./ programmable couplers	3360 J programmable couplers	6016 / programmable couple		

09 qubits working – 95% yield	1097 qubits working – 95% yield	2038 qubits working – 97% yield
472 J programmable couplers	3360 J programmable couplers	6016 J programmable couplers
0 mK max operating emperature (18 mK nominal)	15 mK max operating temperature (13 mK nominal)	15 mK max operating temperature (<i>nominal to be measured</i>)
% and 3.5% precision level for and <i>J</i>	3.5% and 2% precision level for <i>h</i> and <i>J</i>	To be measured
0 us annealing time 2 ms programming time	5 us annealing time (4X better)12 ms programming time	5 us annealing time 9 ms programming time (25% better) New: anneal offset, pause, quench
graph connectivity per qubit	6 graph connectivity per qubit	6 graph connectivity per qubit

* Implements only an oracle that offers quality solutions to the Ising problem

Input: Instances of the Ising model -> map on a Chimera graph with weights h_i (qbits) and weights J_ij (connections).

$$\mathcal{H}_{\mathsf{Ising}} = \sum_{i \in \mathsf{V}(G)} h_i \sigma_i^z + \sum_{ij \in \mathsf{E}(G)} J_{ij} \sigma_i^z \sigma_j^z.$$

list

Ideally: Perform a quantum/adiabatic annealing to find one low energy state.

-> Functionally similar to simulated annealing (not guaranteed to have an optimal solution).

list

Larger the problem size, greater number of qbits needed

- -> Need for decomposition...
- -> Interconnection topology constraints...

Transformation of a QUBO* problem to an Ising Hamiltonian problem (NP-Hard):

- Mapping the QUBO matrix on the interacting physical qbits of the hardware graph:
- Approach: 1 variable \rightarrow N qbits
 - Not enough connections on qbits (hi) \rightarrow max 6 edges !

Approach: 1 variable \rightarrow 1 qbit

Not enough edges in the graph: 24x4x4 = 384 edges!

128 hi (qbits) + 7800 Jij (coupling terms)

LIMIT OF A DECOMPOSITION APPROACH !?

Problem: very low qbit efficiency for dense matrices!

Up to 95% of physical qbits used for logical qbits connections

Very low physical qbit interconnection graph (quadratically)

Implemented solution in D-Wave tools:

<u>"subdivide" QUBO into resized sub-QUBOs to fit with the hardware</u> architecture limitations.

- Constraints:
- Number of sub-problems: exp(prob_size/subprob_size)
- Risks of losing the initial problem structure

Proposed approach

Exclude coefficients likely to have little impact on an optimal solution

<u>Relaxation</u>: try to "deepen" the matrix \rightarrow A single call for annealing?

Requires several annealing invocations

→ Solving smaller problem sizes

How to take advantage of the (low) qbits number?

Are there isomorphic relaxations within a Chimera graph which offers interesting solutions?

Is it easy to find such relaxations?

If this kind of relaxations exist \rightarrow how complex is the corresponding algorithm?

Else \rightarrow hard to solve dense QUBO instances with a single call to the D-Wave quantum annealig

RESOLUTION APPROACH AND SEARCH ALGORITHM

- Relaxation n_coefficientsQUBO = n_edgesChimera without interconnection topology
- First Step : Local search algorithm with a randomly selected subset n_coeffcieintsQUBO
- Second Step : Randomly substituting a selected coefficient by zero
- Verification with annealing \rightarrow Economic function computation of the problem

				\frown	\frown		\frown	
QUBO	Size	Edges	Density (%)	Qbsolv	$relax_1$		rand	
factoring	127	703	10	-767	-538		13	σ
bqp100-1	100	464	10	-12392	-11967		-548	ā.
bqp100-5	100	459	10	-9629	-9062		-557	×
Rand-1	128	509	8	-5912	-5158		-85	<u> </u>
Rand-2	128	522	7	-5458	-4932		258	ື
Rand-3	128	499	7	-6413	-6056		112	Ť,
Rand-4	128	1496	18	-13159	-9901		-102	Q
Rand-5	128	1570	19	-9940	-6524		23	0
Rand-6	128	1503	19	-12269	-9071		-570	
Rand-7	128	3874	48	-16814	-8125		1175	— O
Rand-8	128	3845	47	-18205	-11378		507	5
Rand-9	128	3819	47	-16443	-9609		-213	_
Rand-10	128	5769	71	-19175	-9174		429	დ
Rand-11	128	5833	72	-21317	-12801		-555	>
Rand-12	128	5881	72	-22498	-12879		-2034	ب
Rand-13	128	7866	97	-27762	-13984		-1057	v
Rand-14	128	7842	96	-23323	-11958		-2004	Ô
Rand-15	128	7839	96	-24758	-13276		-676	- Č
						,		

Number of eliminated coefficients

Competitive results with conventional annealing (except for high QUBO densities) \rightarrow Experimentally the results are "good" quality solutions.

Generated matrices do not take into account topology!

List
CE2LECHRESOLUTION APPROACH AND TOPOLOGICAL
CONSTRAINT

- Constraints related to the architecture of D-Wave \rightarrow qbits interconnection topology represented in a quadratically less dense graph^{*}.
- When the QUBO problem graph is not isomorphic to this graph: Problem cannot be directly solved

QUBO «fully» mapped on Chimera

RESOLUTION APPROACH AND TOPOLOGICAL CONSTRAINT

Using local search

Solving optimization problems -> Finding the right solution in a set of candidate solutions: similar to

annealing

list

Ceatech

Goal*: Go through the set of "near" candidate solutions in order to find the better solution

						\frown		Repartition des coefficients dans la matrice
QUBO	Size	Edges	Density (%)	Qbsolv	$relax_1$	$relax_2$	rand	
factoring	127	703	10	-767	-538	-202	13	
bqp100-1	100	464	10	-12392	-11967	-5356	-548	
bqp100-5	100	459	10	-9629	-9062	-3764	-557	20
Rand-1	128	509	8	-5912	-5158	-1811	-85	
Rand-2	128	522	7	-5458	-4932	-1938	258	40 0.4
Rand-3	128	499	7	-6413	-6056	-2872	112	
Rand-4	128	1496	18	-13159	-9901	-6263	-102	
Rand-5	128	1570	19	-9940	-6524	-3565	23	
Rand-6	128	1503	19	-12269	-9071	-5029	-570	🚽 🔰 🔰 🔰 🔰
Rand-7	128	3874	48	-16814	-8125	-6280	1175	
Rand-8	128	3845	47	-18205	-11378	-5707	507	
Rand-9	128	3819	47	-16443	-9609	-6994	-213	-0.4
Rand-10	128	5769	71	-19175	-9174	-7775	429	100
Rand-11	128	5833	72	-21317	-12801	-8669	-555	-0.6
Rand-12	128	5881	72	-22498	-12879	-10236	-2034	
Rand-13	128	7866	97	-27762	-13984	-10921	-1057	120
Rand-14	128	7842	96	-23323	-11958	-6979	-2004	-1.0
Rand-15	128	7839	96	-24758	-13276	-9947	-676	0 20 40 60 80 100 120
								Axe i de la matrice

Mitigated results:

Low densities -> 30-40% selected -> up to 50% deviation.

High densities -> 85% selected -> Results close to the topology-free case.

*Vert, D., Sirdey, R., & Louise, S. (2019, April). On the limitations of the chimera graph topology in using analog quantum computers. In *Proceedings of the 16th ACM International Conference on Computing Frontiers* (pp. 226-229). ACM.

ANALYSIS AND PERSPECTIVES

By performing a large number of executions on matrices of different densities:

Possibility of obtaining solutions close to the pre-determined solutions.

Was it possible to <u>easily</u> obtain a graph which is isomorphic with Chimera and was it possible to have a solution close to the known optimal \rightarrow <u>Local search?</u>

Two possibilities can be identified:

Work with other topologies? \rightarrow Pegasus ?

The new D-Wave internal architecture

Pegasus will have each qubit connected to 15 other qubits instead of 6 -> 2.5 times more connectivity

Use quantum annealing on several isomorphic relaxations?

THANK YOU FOR YOUR ATTENTION

Centre de Saclay Nano-Innov PC 172 - 91191 Gif sur Yvette Cedex

Minimize the Ising model \rightarrow (perhaps) faster than conventional annealing?

→ Hardware acceleration?

Performance comparisons among 4 solvers on ½ s Isomorphic instance with Chimera*

Best solution cost admitted for each instance

Solver success rate \rightarrow 3%.

Ceatech

Quantum Algo. success rate \rightarrow 100% regardless of the problem sizes.

Proportion of best solutions found in 491ms of CPU time (tabu, akmax, cplex) and Quantum Algo. (hardware) McGeoch 2013

Results: Quantum Algo. remains competitive compare to a CPLEX solver running for up to 30 minutes!

Quantum Algo. appears to be equivalent to simulated annealing but with a quantum acceleration as a bonus?

[1] Choo, Joel. "Investigating the Feasibility of Solving the Quadratic Assignment Problem using Quantum Computing."

[2] https://github.com/dwavesystems/qbsolv/blob/master/qbsolv_techReport.pdf

[3] Preprocessing Algorithms for Scalable Quantum Annealing Team: Hristo Djidjev (CCS-3) Georg Hahn (Imperial College, UK) Guillaume Rizk* (INRIA-Rennes, France) April 27, 2017

[4] Lewis, Mark, and Fred Glover. "Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis." *Networks* 70.2 (2017): 79-97.

[5] Kathleen E. Hamilton, Travis S. Humble. "Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets." *Quantum Inf Process (2017) 16-94*

[6] Corporate Headquarters. Programming with D-Wave : Map coloring problem. 201

[7] Sanjeeb Dash. " A note on QUBO instances defined on Chimera graphs . " September 13, 2018

[8] James King, Sheir Yarkoni and al. « Quantum Annealing amid Local Ruggedness and Global Frustration. » D-Wave Systems (Dated: March 2, 2017)